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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHIFICAL ROTS NO. 1107

THIN OBLIQUE ATIRFOILS AT SUPERSONIC SPEED
By Robert T. Jones

SUMMARY

The well-known methods of thin-airfoil theory have
been extended to oblique or swept-back airfoils of finite
aspect ratic moving at supersonic speeda. The cases con-
sidered thus fdr are symmetrical airfoils at zero 1lift
having plan forms bounded by straight lines. Because of
the conical form of the elementary flow fields the results
are comparable in simplicity to the results of the two-
dimensional thin-airfoil theory for subsonic speeds.

In the case of untapered airfoils swept back behind
the Mach cone the pressure distribution at the center
section is similar to that given by the Ackeret thsory
for a strajight airfoll. With increasing distance from
the center section the distribution approaches the form
3iven by the subsonic-flow theory. The pressure drag is
concentrated chiefly at the center section and for long

wings a slight negative drag may sppear on outboard sec-
tions, -

INTRODUCTION

In reference 1 it was pointed out that the wave drag
of an infinite cylindrical airfoil disappears when the
airfoil is yawed to an angle greater than the Mach anglse.
This observation led to the conclusion that the drag of
& finlite airfoil could be greatly reduced by the use of
sufficient sweepback. With such a swept-back wing the
wave drag would be assocliated with departures from the
1deal two-dimensional flow at the root or +tip sections
and would thus be a function of the aspect ratio. The
present report extends the theory of reference 1 to take
account of theése effects.
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The treatment is based on the theory of small dis-
turbances in & frictionless compressitle fluid. The :
idealizasd fluid and its eqguations of motlon are identical
with those employed in acoustlcs in the theory of sound
waves of smell amplitude. The application of the theory
iz thus llimited to bodles having thin cross sectlions so
chat the velocity of motion imparted to the fluid is small
relatlve to the valocity of sound and so that the pres-

sure dlsturbances produced ere -amall relative to the
ambisnt pressure.

The adaptation of the sound-wavs theory to the asro-~
dynemics of moeving bodles was suggested meny yesars ago
vy Prandtl. The theory was epvlied by Ackeret (ralfer-
ence 2) to thin airfolls rnoving at supersonlc speed.
Ackeret's treetment 1z limlted, however, to infinitely
lone cylindrical alrfolls moving. transverssly. The
present theory may bo. consldered an extension of Ackeret's
thoory tc take into account winge of finice span and wings
having tapered or swept-back plan forms. In the cass of
swopt-back »lan forms the results are markedly different
from thosc obtained by the Ackorst taeory and approach
the v -lues indicsated in refarences 1 and 3.

In reference l. Busemann describes & method for cal-
culating the supsesrsonlc flow over bodies which produce &
econlcal pressure fisld. DBussmann chows that the flow
around cores of clreular cross sections as well as the
flow around the tip of a rectangular 1ifting sucrface
satisfles this condition. fThe fact that a greaet varisty
of thres-~dimensional flows can be constructed by the
sunervosition of conical cnd evlindricel flow fields
lecads to an zsscntial simplifilcation of tho airfoil

theory at supersgonics speeds. _

The pressnt treatment dilffcrs from Busemann's in
that 1t i3 further limited to flat bodlea, that 1s,
bodles which arz thin in both longzitudinal and transverse
sectiong. This additional restriction leads to a much
simnler mathemaiical treatment mnd one which is apnlicable
to a wide variety of airfoil shapes. In a papor proescnted
before the Institute of Acronsutlcal Sciences—, Allon E.
Puckett alaso treats symmetrical non-1ifting bodles.
Puckett!s method malkes use of integral cxproessions corre-
sponding to tho veloclty wotential of plane-source distri-

bution.
l1).;.th Annual Mectineg, New York, January 29, 19i6.
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SYMBCTLS

flight velocity

Mach number

cocrdinates

point on X-axis

limit of integration
disturbance-velocity potential
disturbancse-velccity components

value of u at X3

value of u for conjugete arrangement

iocal pressure

dynamic pressure (%pvz)

density of alr

Legendre functions

source-strength factor
differentiel opserator

dreg coefficlent

thickness of wing
slope of line source (absoclute value)

chord of wing

THE OBLITUE LINE SOURCE

The assumptions of small dlisturbances and a constant
velocity of sound throughout the fluld lead to the

3
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well-known linearized equation for the velocity poten-
tiul @ (see referencs 5)

(l - Mz)gxx + Byy + Zoz = O (1)

The snalysis 1s simplified by introducing the coordlnates

-
xl—-x

vy =\M¢ - 1y Y (2)

zq =\jM2— 1z

Dropping the subscripts from the transformed coordinates
gives . .

Frx - g&y - f25 = 0 (3)

According to the thin-airfoil theory the pressures
on the transformed alrfoil are given by

Ap
q

i

o7 (z—0) (L)

- -1
=Y T Vi

-

az
and the slope of tlie airfoll surface;_a;_.is equel to the

slope of the streamlines near the chord plene; that 1is,
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The elementary sclution of eguation (3) for & point
source 1is : S E - : :

1

VR

This solution 1s directly related to the subsonic poten-
tial

P =

p’o—' 1

) Vx2 + y2 + 22

In the subsonic case the equipotentlal surfaces are, however,
ellipsoids, whereas in the supersonic case the equipo-
tential surfaces are hyperbolcoids limited by the Mach

cone., (8ee reference 5 for the derivation of these ele-
mentary solutions.)

Becausse of the linearity of equation (1) a solution
may be used to denote one of the velocity components
rather than the veloclty potentlal. The specification
of one component in this manner actually describes the
whole flow field since the other components may be obtalned
bv integrating the glven component to obtaln the velocity
potential and then differentiating the results along the
desired directlions to obtain the desired components.

This procedure is especially useful in the thin-airfoil
theory, where the complete velocity field may not be
required.

ALdopting the foregolng procedure, one may write

- 1

to sz - 72 - 32

Since wu is proportional to the pressure, such a solution
corresponds to a point source in the pressure field. The
solution for an obligque line source may be obtained by
integrating for the effect of & row of point sources along
the line y =mx. It will be shown that such & line source
satlsfies the boundary conditlon for a thin wedge-shape

- 5
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body. This solution, as well as other expressions relating
to obligue airfoills, can be most convenlently expressed
by referring to the oblique coordinates

X! = X - my

1l

yl‘

z' = Vl - mé z

(See fig. 1.) It may be shown that if any function
f(x, vy, z) 18 a solution of .

y - mx

fxx - fyy = £35 = 0

then f£(x', y', 2') 1is also & solutlon. In particular,
the point-source solution becomes

1 1 1

VX'Z - y'a - z1° V& - m? vxz - y2 - z2

Hence the Integratlon for the effect of an inclined line
of sources may be performed directly along the obligueé
X'-axis; thus, for m< 1.0

5= :
1 A&
I! g

£
»O V(xt_ é‘)z - S,-|2 - Z'Z

v t
= I cosh"l ' X . ' (6)
¢v12 + 312

o
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where &'y, 1s the position of the lasat source whose liach
sone includes the point (x!', y!, z!') and is given by

gll e _x! . \‘y!a + Z‘2

When m aonwroaches 1.0 the sourcs line aporosches
coincidence with the liach cone, corresponding to a trans-
verse velocity component equal to the vz2locity of sound.

For values of m greater than 1.0 the Integration
wields

- !
w = -Ticos™* — (7)
7’2 + z1e

Tt will be seen that in this casse I 1s imaginary.

The vertical velocity near 2z = 0, which determines
the shape of the boundary, may be determined by inte-
grating u with respect to x and then differentiating
the resulting velocity potential with resvect to z;
thus (see apnendix),

. \
W o= Eg :-EL J u dx
dz oz

1 - m? (8)

HiH

if z2z—0 and yr <€ 0. If ¥' >0, w=0. There is
thus a discontinuity in the vertical velocity of the
streamlinss when they cross the 1line scurce at y! = 0.
For smell values of I/m this discontinuity in vertical
velocity agrees with the boundary comdition for a simple
wedge shape having a small wedge angle. (See fig. 2.)
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If the source strength I is held constant and m
1s allowed to approach zero, the wedge angle ultimately
becomes large. At m = 0 the line source actually
satisfles the boundary condition for the cilrcular cone
(reference 6), but it is found that the slope of the
conical boundary does not agree with the slope of the
streamlines near 2z = 0 and hence the theory no longer

holds. The condition %-féo thus represents the transi-

tion from an oblique airfoll to a body of revolution and
will be avolded in the present analysis by restricting
the formulas to flat bodles, that 1ls, airfoils that are
thin in both longlitudinal and transverse section.

AIRFOIL OF WEDGE SECTION

Over the wedge section near the plane =z = (0, the
Tormula (6) becomes simply

'
q = I cosh™t ~F— (9)
byt
where |y! denotes the ubsolute magnitude of y!' = 3y - mx

The pressure 1s thus constant along the radial lines

= (Constant (10)

el

and is conveniently represented by the variation along a
line parallel to the x-axls. Figure 2 shows the oblique
wedge-shape figure corresponding to a line source with
m< 1.0, In this case the press&re field i1s confined to
the interior of the Mach cone

and the theory, unlike the Ackeret theory, indicates a
stagnation polint along the leading edge. (actually, of

course, the thin-airfoll theory shows an infinlte veloclty
at such points, but this is to be lnterpreted as d velocity

of the order of magnitude of the flight velocity V. The
pressure to be expected along the leading edge 1s the
stagnation pressure corresponding to the transverse
veloclty component.)

- yd..z _xlz_ytz_zlaz

0
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Given %ﬁ = %, the wedge angle measured in down-

stroam sections, the source strength must very with m
according to

.V m dz
i ax
Vl - m2

(from equation 7). Then

Ap 2222 B oenl X (12)

I m exceeds 1.0, the leading edge of the airfoll
will lie outside the Hach cone. In this case

xl
Tf o cos™=t (13)

umz - 1. . \’ytz + Z!2

ﬂlm
fls

In the reglon betreen the leading edge and the Mach cone

-1 xl is constent and equal ta 1w; hence the pres-

sure in thils region is constant, that is,

>08

A—f=z§§-———ﬂ—— (1)

Figure 3 illustrates this result.
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If m—o &8 semi-infinite airfoll with its leading
edge at right angles to the direction of flight 1s
obtalned;: here

= - = — (15)

\I(y - mx)2 + (1 - m2)z2 x2 - z2

and %? = Zgi wherever 7y > an - 2z2. This value sagrees
with the Ackeret theory.

ATRFOILS BOUNDED BY PLANE SURFACES

The distribution of pressure over symmetrical alr-
folls bounded by plane surfaces can be obtalned by super-
Imoosing the pressure flelds for several line sources and
sinks. This superposition 1s greatly simplifled by the
conical form of the pressure fleld for each single line
source. Because of this form the whole distribution in
the plane z = 0 1s, in effect, represented by a single
curve. If the velocity field for 8 lline source beglnning
at the origin (equation (6)) is denoted by u and that

beginning at x = -1 1is denoted by u_q, and scv forth,
the sum

u_l - u+1

represents the velocity over a plate of uniform thickness
having a beveled leading edge of constant width. (See
fig. 4.} Similarly

u.y -~ 2u + uyj

represents the pressure field for an airfoll having
diamond-shape cross sectlons.

The superposition required for several sources or
sinks can be accomplished by manipulation of w« single
curve if it 1s remembered thut u 1s a function of the
ratio x/y. Filgure L 1llustrates this process for a
source and a sink. In terms of the ratlo x/y the
gseparation of source and sink and hence the scale of the
chord length continuslly diminishes with Ilncreasing
distance from the root section.

10
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At large cdistunces from the vertex (x!'—w) *the
expraession (for m < 1.0)

L S xt - 1 .
U_j = Uyl o cosh™+ x - cosh™t (16)

71 - m| ' +m|
is found to approach the value
' - m . ! L
10g T2 = 20,( ) (D

where Qo 1s the Legendre function (see reference 6).

In the thin-zirfoll theory for subsonlic speeds 1t
can be showvn that if

dz 0
X —_— 1
V= (18
then
u C}:Qn(x) (19)
since Neumann's formula (reference 7, p. 116)
Y opae)
S
Qp = 3 r —BE2 ag (20)

may be Interpreted as the integration for the velocity
distribution due to an array of sources of strength

wad¥f = Pp(E) ag

11
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elong the chord of the airfoll. The expression i-Tlo(y‘/m)
of equation (17) thus represents the subsonic pressure
distributlion over the bevelsd adge.2

At the root section (y = 0) only the forward source

need be considered since the airfoll surface 1s ahead or
the Mach cone originating at the rear source. IHere

X+ 1 - my

1w
U_q = U,q cc cosh™= —
-1 +1 vy -m (x + 1)]

-1 1
o cosh™ = (21)

and the pressure cver the root section is thus constant,
a3 given by the Ackeret theory, bul is altercd In magnitude
»y the obliqulty.

The obllque wing 1ying behind the Mach lines thus
cshows the Ackeret type of pressure distribution over the
foremost section and a progressive change alonn the soan
from this distribution to the subsonic type of distri-
bution. Since the subsonlec type of distribution shows
no pressure drag, there is a contlnuous falling orf of
the pressurs drags with increasing distance from tho roct
section. The prassure drag of the obligue wingz thus arlses
shiefly on the foremosst section, and 1t follows that the
Jdrag cocfficient of the wing as a whole diminishes with
lncreasing aspect ratioc. Tt will be shown subsequently

2Similarly, if P,(&) dg 1s taken as the chordwlse
dAlstribution. of vortlcity,

ua Pp(x)
w a:Qn(K)

5

(2N

lael

The first of fthis serics of airfolls is the camber shsane
curved to sunport & uniform Load.

12
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that the effect of cutting the wing off along a line

Y = Constant to oproduce a downstream tip causes a reduc-
tion of the pressure drag on the adjacent sections, and
if the aspect ratio is sufficlently high, the pressure
dreg 1n the region of the downstream tip may ectually be
negative.

If the wing lies shead of the Mach lines (m > 1.0)
the Ackeret type of pressure distribution occurs and a
pressure drag arises over the whole length. In this case
both u and w are conatant over the beveled part at a
distance from the origin.

The treatment thus far applies to semi-infinite
cylindrical wings having root sections near the origin,
A complete swept-back wing may be obtained by the addi-
tion of a symmetrical or conjugate arrangement of source
lines below the x-axis. Values of u for this conjugate
arrangement may be denoted by u. Flgures 2 and 3 show U
for a single inclined source and figure 5 shows calculated
pressure distributions at several ssctions along the svpan
r'or a complete swept-back airfoill having beveled secticns.
The eddition of the conjugate source lines doubles the
pressure at the root sectlon, but this interference effect
falls off rapidly along the span. It is noted that, as
in figure li, the most significsant change in pressure
distribution occurs along the expansion wave originating
at the tralling edge of the root section. Figure 6 shows
the variation in pressure drag along the span for this
airfoil obtained by integrating the chordwise components
of pressure &t the different sections. '

The addition of a reversed source~sink distribution
havinz its origin displaced to & point O, (see fig. 7)

will show the effect of cutting the wing off in a direc-
tion parsllel to the direction of flight. It will be
evident that the effect of such a tip is characterized
by the subtraction of the curves U anc is limited to
the ares lying within the Kach cone which origilnates at
the tip. It is interesting tec note that pressure distri-
butions of the aAckeret type, except reversed in sign,

are added ncar the tip; hence, cutting the tip off in
this manner reduces the drag of sdjacent sections.

Tgure 8 shows the pressure distributions over a
rectangular airfoil having a leadling edge at right angles

15
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to the flow. 1In the trlangular srea shead of the Mach
cones origlnating at the tips the pressure is constant,
a3 ziven by the Ackeret theory, whereas behind these Mach
conss the pressurs drops sharply.

AIRFOIL OF BICONVEX SECTIONS

Curved surfaces requlire a continuous dlstribution
of sources and sinks alined wlth the zenerators of the
surface. RFach elementury scurce-line causes an infini-
tesimal change 1n directlon of the surface and hence the
slope at any polint may be obtalned by adding up the
effscts of all sources shead of that polnt. Thus

X .
. V - me
dz ¢ 1 m& &L az (22)

or

32z w VL - m? ar

T e ————————— Vena—

axe v m ax,

For airfoils of constant chord, m will be a constant
and the integrations can be performed without difficulty.
The simplest case 1s that of constant curvature, which
loads to profiles formed@ from circular arcs. .

In order to obtaln a biconvex profile it is necessury
to introduce finlte sources of strength sufficient to form
the desired angle of intersection of the arcs at the
leading and trailing edges, together with a uniform dis-
tribution of sinks along the chord line between the two
sources. These proflles thus require a uniform distri-
bution of sources or sinks, which may be obtained by
Integrating the elementary solution for ths line source

(equation (6)). The vesulting solution may be denoted

by B¢ end is, for m <1,

1
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nx P .
- 1- 1 x!
R B -
D Iy‘ES} m v] m gy ’

ui¥i

Inasmuch as the elementary solution u 1s of the
form f(?) the lntegreted solution appears in the form

oo o

and will be conveniently represented by a curve typlcal
of a2l1l spanwise stations, namely,

1

_— =

¥D

s
4N
e

i

For a closed profile intersecting the X-axis at the
points 1 there is obtained

_ 1 1
Zu =u_; tuyg -7y (}5‘1-1 - Eu+]> (2L)

This superpcsition may be accompllished conveniently by

transposing and adding the tynicsal curvea u and gsu,

as shown in figure 9.
It will be found that if m is less than 1.0 the
veloclty distribution approaches, with increasing distance

from the root section, the form glven by the subsonic-flow
theory for an airfoil of biconvex section, that is,

-

> (25)
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At the root scection, however, the form is simply that
siven bv the Ackeret thoory for a stralght airfoll,
alshough the values are reduced in magnitude by the

factor — cosh™+ &-
p m
1 - m~

The pressura distribution and the variation of drag
elong the spsn for the symmetrical hiconvex wing ars shoewn
in figures 10 and 11,

CCGNICAL SURFACTS

For tapered alrfoils both m and T will be
functicns of & (See equstion (21).) It is easily seen
that closed surfeces can be obtained only on the condi-
tion that. the liue sourcos heve s cormon »oint cf inter-
czetian, as in flgure 7. If this nsoint is denoted by
Ko! .'?O

The surfeace obtainad 1s one generatsd by & line passing
ithrough the fixed polnt =g, Yo end hencs 1s a conlcal

surfacs.

The pressure over the tapered airfoil requires the -
integretion of

x=¥ X - e;' -
u = r cosh~1 —~ n‘(x nﬁ;)l %E ag
d&y 5 - - _ &
1%=Y
= ug -d-l:. -4
Z, g =

16
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vhere &5 1is the location of the vertex of the airfoil and

m dzz

41 —7;5 ag?

In conclusion it should be notsd that the pressures
have been derived for an airfoil transformed according
te equations (2). The pressures at corresponding points
of the original airfoil are to be obtained by dividing

by M2 - 1.

al

ar . ¥V
ag ~ w

Langley Memorial Acrenautical Laboratory
Wational Adviscory Cormittee for Aeronautics
Langley Ficid, Va.,, May 23, 1946
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APPENDIX

MVALUATION OF IWTEGRAI OF E7UATION (&

For m < 1.0 +ihe disturdbance 1ls zZero outside the
liech ccne and the range of integration should be extended

only from =x; = qye + 22 to x, thet is,

Vi otz : .t
u dx = _ cosnt = dx (A1)
2 w 2
o 4 22 -y-l 4 ZTE
(for unit source strength). Furthernore,
X 1 X
o _ ou ..
— v dx = — dx (A2)
oz . oz
JVre o+ 22 - UVYZ + 27
since ths Integrand is zero at the lower limit.
YNow
> o t -xtz Y1 - ;2
2 gosh™t x = A = (AZ)
end hernce the intepral
nx -
L L . el
W I dx (al)

JJ‘:'E - 'Srl?_ - 7!

- ' -
Vr2 + 22 (12 + 212)

must be evaluated.

18
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First it is noted that the integral vanishes
with 2z except in the neighborhood of the Mach cone

(‘fxrz - y12 - g2 = 0) and in the neighborhood of the
line source (y' = O) Near the Mach cone J!2 + zZ!12m—mxt2,
so thet -

~¥xtzt dx -ﬁ -2 dx (3.5)
(y!a + z!?_) Vxla - y12 - z12 VX.‘— - yz - z2

Since the latter integral approaches zero with 2z, there
18 no contribution to equation (A4l;) in the region of the
Mach cone. On the other hand, near the line source y'——0

and Vxﬂz - y'z - z12 —>x'; hence, as z!'—0,

- - 1
X'z dx — z dx=i-tan -1 Z—+ Constent (A6)

(y2+212) \/x,e_yfe_z,e 7124 512

The value of the integral changes from O to w in crossing
over the line cource at ¥!'=Q and is positive or negative
depending on whether z' approaches zero from the posi-

tive or negative slide of the =xy plane. Hence

w=:l:—§Jl—-m2
Jid}

If m 1is greater than 1.0

-1 X!

Vylz + Z'2‘

(A7)

= €03

19
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and the flow disturbance extends outside the Mach cone

to & reglon bounded by plane waves sxtending from the line
source and tangent to the Mach cone. (Ses fig. 12.) The
egquation of these prlanes can b2 casily shown o be

w12 4 212 = 0; henece Tor m > 1.0 the lower limit of
integratlon 1s given by

-yle o4 Z’2 = 0

or
2
- Yme -« 1 =
%y, = L ”y (A8)
Then
AKX
o 1
S | v E P ax (a9)
) Vg VY'E + 212

In thls case u does not gzo to zZero at the lower 1imit
but is eoual to w. In all other reglons, however,

the integral approaches zerc uniformly with 2z as in the
rreceding case; hence

[

d Ox
W o= — u dx = uy =t -+ X e - 1 (Al10)
dz dz m

23 beforo.
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distribution to produce tip.
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